MPI for Scalable Computing

Bill Gropp, University of lllinois at Urbana-Champaign
Rusty Lusk, Argonne National Laboratory

Rajeev Thakur, Argonne National Laboratory

é,«,\ U.S. DEPARTMENT OF
¢ ENERGY



The MPI Part of ATPESC

= We assume everyone has some MPI experience

= We will focus more on understanding MPI concepts than on
coding details

= Emphasis will be on issues affecting scalability
"= There will be some code walkthroughs and exercises

= We will use MPICH on your (Linux or MacOS) laptop for initial
experiments

— supports preliminary implementation of the new MPI-3 standard

= Vesta (BG/Q) will also be available for larger runs



Outline of MPI Material in ATPESC

= Today = Tomorrow afternoon
— MPI concepts — Using remote memory access to
—  MPI-1, MPI-2, and MPI-3 avoid extra synchronization and data
— Blocking and non-blocking motion
— MPICH — The importance of process topologies
— Installing MPICH on your personal — Example: neighborhood collectives
machine — Work with halo exchange example

— Running some example code

=  Tomorrow morning
— Scalability issues in MPI programs
— Sources of scalability problems

— Avoiding communication delays
e understanding synchronization
— Minimizing data motion
e using MPI datatypes

— Topics in collective communication



What is MPI?

MPI is a message-passing library interface standard.
— Specification, not implementation

— Library, not a language

— Classical message-passing programming model

= MPI-1 was defined (1994) by a broadly-based group of
parallel computer vendors, computer scientists, and
applications developers.
— 2-year intensive process

" Implementations appeared quickly and now MPI is taken for
granted as vendor-supported software on any parallel
machine.

" Free, portable implementations exist for clusters and other
environments (MPICH, Open MPI)



Timeline of the MPI Standard

= MPI-1(1994), presented at SC'93
— Basic point-to-point communication, collectives, datatypes, etc
= MPI-2(1997)

— Added parallel I/O, Remote Memory Access (one-sided operations), dynamic
processes, thread support, C++ bindings, ...

= - Unchanged for 10 years ----

= MPI-2.1 (2008)
— Minor clarifications and bug fixes to MPI-2

= MPI-2.2 (2009)
— Small updates and additions to MPI 2.1
= MPI-3(2012)

— Major new features and additions to MPI



Defining Some Terms

A process consists of an address space, a program, and one or more
threads of control, each with its own subroutine-call stack and program
counter. The threads share the address space, which has advantages and
disadvantages.

— an old-fashioned Unix process is a single-threaded process.

In MPI-1, a parallel program was thought of as a fixed-size collection of
old-fashioned Unix processes, each identified by its MPI rank.

— Note that MPI was never SPMD (Single Program Multiple Data); different MPI
ranks could always be executing different programs.
In MPI-2, semantics were defined that enable MPI processes to be

multithreaded (see “hybrid programming”, later this week) and for more
processes to be added at run time.



Programming and Address Spaces

= Sequential programming = one single-threaded process

Parallel programming =

— One process, multiple threads (OpenMP, pthreads) OR
— Multiple single-threaded processes (MPI-1) OR
— Multiple multiple-threaded processes (MPI-2)

= Shared-memory parallel programming is harder than it looks.

" Yet, processes (or threads) need to communicate, or else one
has just a collection of sequential programs rather than a
parallel program.

— e.g., an old-fashioned batch system

= MPIis for communication among processes (with separate
address spaces).



MPI Communication

= MPI limits in both time and space the exposure of one
process's address space to action by (the threads of) another

process
MPI|_Recv | MPI_Send |
OR
MPI_IRecV MPI_Isend

| [P |
'S [

MPI_Wait MPI_Wait




MPI Non-blocking Communication - 1

= MPI_lIrecv exposes part of its address space to the “system” (OS
+ MPIl implementation code + non-portable communication
hardware/software)

— the “system” may utilize internal buffers, perhaps smaller than the
application’s buffers, requiring multiple data transfers by the system

= MPI_lsend tells the system where the data to be moved is
located and into what process’s receive buffer it is to be placed.

= Both buffers at this point belong to the “system”.

= MPI_Wait on both sides delays its caller until the system no
longer needs to access the buffer
— Receiver can now make use of the new data in the buffer

— Sender can now reuse the buffer



MPI Non-blocking Communication - 2

= The blocking operations (MPI_Send, MPI_Recv) can be dangerous.

— The MPI Forum only included them because users of earlier systems would
expect them.

= Deadlock danger: exchanging large messages

0 1
MPI_Send(1) MPI_Send(0)
MPI_Recv(1) MPI_Recv(0)

— Deadlocks if the system cannot absorb the sent message, thus allowing the

send to complete before the corresponding receive is posted.
= Performance danger: delayed receive of large message

0 1
MPI_Send(1)

MPI Recv(O)
— Send blocks untll corresponding receive is posted, perhaps much later.



Non-blocking Communication - 3

= Using the non-blocking receive (MPI_Irecv) solves both problems by
providing the system a place on the receiving side to put the message

when it is needed by the send.

0 1
MPI_Irecv(1) MPI_Irecv(0)
MPI_Send(1) MPI_Send(0)
MPI_Wait MPI_Wait

and

0 1
MPI_Send(1) MPI_Irecv(0)

MPI_Wait

= Such a place can be provided on the sending side by the use of the
buffered send (MPI_Bsend).



Overlapping Communication and Computation

= Some believe that the purpose of non-blocking communication is to
specify that communication and computation are occur simultaneously,
and are disappointed when it doesn’t always happen.

= Non-blocking communication allows an implementation to do this if the
“system” (hardware, MPIl implementation, specialized communication
software) can do so, but the real purpose is as described above.

= A standard-conforming MPI implementation on a specific platform is
allowed to

— Utilize a system thread or hardware support in order to move data in parallel
with local computation between the Isend/Irecv and the Wait.

— Move all or part of the message during some other MPI call (e.g., MPI_Test)
between the Isend/Irecv and the Wait.

— Complete an operation during the Isend call (if the “system” can absorb the

message or the Irecv has been posted).

— Delay the initiation of the data transfer until the corresponding Wait.



Summary of Types of Send

= MPI_Send blocks until the message has been absorbed by the “system”.
This does not mean that the message has been received.

= MPI_lIsend doesn’t block (should always return quickly).

= MPI_Ssend blocks until a matching receive has been posted (supplying the
space for the message).

= MPI_Rsend assumes that the corresponding receive has been posted. The

programmer is responsible.

0 1
MPI_Irecv(answer,1)
MPI_Send(question,1) MPI_Recv(question,0)

MPI_Rsend(answer,1)
MPI_Wait

= MPI_Bsend copies the message into a local buffer (provided by the user
with MPI_Buffer_attach) in order to avoid blocking.



Collective Operations

= MPI provides many collective communication patterns, some with

computation included. Custom computation operations are possible.

= Multiple algorithms based on messages sizes, machine topologies,

machine capabilities.

— Scalable algorithms a research topic

= Common feature: called by all processes in a communicator

=  Performance note: Measuring time taken by a collective operation can

obscure what is really a load balancing problem.

compute

allreduce

compute

allreduce

compute

allreduce

= MPI-3 has non-blocking and neighborhood collective operations.




MPI-2

= MPI-2 introduced dynamic process management, remote

memory access (one-sided operations), parallel I/0, thread
safety, C++ (since removed) and Fortran-90 bindings.

= We won’t discuss here dynamic process management (not
universally implemented, particularly on large systems, since
it involves process management at the OS level).

* Thread safety will be covered under Hybrid Programming,
later.

= A very brief conceptual discussion of RMA is here...



MPI-2 RMA: Remote Memory Access, or One-sided

Operations
= The RMA window object can be thought of as a generalization of the

MPI-1 communication buffer.
= Allocating a window object exposes a larger part of a process’s address
space for access by other processes, and (usually) for a longer time.
— room for multiple, simultaneously active communication buffers.
— MPI window = union of all process’s window objects
= Separates “buffer” allocation, data movement initiation, and
synchronization (checking for completion).

MPI_Win_create

MPI_Put } All are non-blocking; multiple

MPI_Get : . .
- | operations can be active in same window
MPI_Accumulate object simultaneously

MPI_Fence, Post-Start-Complete-Wait, Lock-Unlock

"= More on RMA tomorrow...



MPI-2 Parallel I/0

= MPI-IO is based on an analogy: Reading from and writing to
files is “like” receiving and sending messages from/to the
(parallel) file system.

= Concepts from MPI-1 are reused:
— datatypes to describe non-contiguous data (in memory and in files)
— non-blocking operations

— collective operations

= More on parallel I/0O later this week

= MPI-3 tomorrow



End of General MPI Part



One Specific MPI Implementation -- MPICH



What is MPICH?

= MPICH is a high-performance and widely portable implementation of MPI

= |t provides all features of MPI that have been defined so far (including
MPI-1, MPI-2.0, MPI-2.1, MPI-2.2, and (almost all of) MPI-3.0)

= Serves as foundation for most vendor MPI implementations

= Active development lead by Argonne National Laboratory and University
of lllinois at Urbana-Champaign
— Several close collaborators who contribute many features, bug fixes, testing
for quality assurance, etc.

e |BM, Microsoft, Cray, Intel, Ohio State University, Queen’s University, Myricom and
many others

=  Current release is MPICH-3.1.2

= Can run experiments here on your Linux or MacOS laptop or a cluster back
home

20



Getting Started with MPICH
= Download MPICH

— Go to http://www.mpich.org and follow the downloads link.

— The download will be a zipped tarball

— You don’t have to download hydra as well, it is included in MPICH.

= Build MPICH

— Unzip/untar the tarball:

— tar -xzvf mpich-3.1.2.tar.gz

— ¢cd mpich-3.1.2

- ./configure —--prefix=/where/to/install/mpich |& tee c.log
— make |& tee m.log

— make install |& tee mi.log

— Add /where/to/install/mpich/bin to your PATH
= |f thereis no Fortran compiler on your machine, add

—-disable-fc —-disable-£77 to the configure line

21



Compiling MPI programs with MPICH

= Compilation Wrappers

— For Cprograms: mpicc mytest.c -o mytest

— For C++ programs: mpicxx mytest.cpp -o mytest

— For Fortran 77 programs: mpif77 mytest.f -o mytest
— For Fortran 90 programs: mpif90 mytest.£90 -o mytest

" You can link other libraries are required too

— To link to a math library: mpicc mytest.c -o mytest -1lm

" You can just assume that “mpicc” and friends have replaced

your regular compilers (gcc, gfortran, etc.)

22



Running MPI programs with MPICH

= Launch 16 processes on the local node (e.g. your laptop):
- mpiexec -np 16 ./test

= Launch 16 processes on 4 nodes (each has 4 cores)
— mpiexec -hosts hl:4,h2:4,h3:4,h4:4 -np 16 ./test
e Runs the first four processes on h1, the next four on h2, etc.
- mpiexec -hosts hl,h2,h3,h4 -np 16 ./test
e Runs the first process on hl, the second on h2, etc., and wraps around
e So, h1 will have the 15t, 5th, 9th 3nd 13t processes
= |f there are many nodes, it might be easier to create a host file
— cat hf
hl:4
h2:2
- mpiexec -hostfile hf -np 16 ./test

23



Trying some example programs

MPICH comes packaged with several example programs using

almost ALL of MPICH’s functionality

A simple program to try out is the pi example written in C

(cpi.c) — calculates the value of it in parallel (available in the
examples directory when you build MPICH)

— mpiexec -np 16 ./examples/cpi
The output will show how many processes are running, and
the error in calculating
Next, try it with multiple hosts

- mpiexec -hosts hl:2,h2:4 -np 16 ./examples/cpi

If things don’t work as expected, send an email to
discuss@mpich.org

24



Interaction with Resource Managers

= Resource managers such as SGE, PBS, SLURM or Loadleveler
are common in many managed clusters

— MPICH automatically detects them and interoperates with them

= For example with PBS, you can create a script such as:
#'!' /bin/bash

cd $PBS O WORKDIR
# No need to provide -np or -hostfile options

mpiexec ./test

= Job can be submitted as: gsub -1 nodes=2:ppn=2 test.sub

— “mpiexec” will automatically know that the system has PBS, and ask

PBS for the number of cores allocated (4 in this case), and which nodes

have been allocated

" The usage is similar for other resource managers

25



Running on BG/Q

scp cpi.c you@vesta.alcf.anl.gov:

See
http://www.alcf.anl.gov/user-guides/overview-how-compile-and-link

ssh vesta.alcf.anl.gov

Add +mpiwrapper-x| to ~/.soft file (if not already there)

Run the command "resoft”

mpixlc -o cpi cpi.c

See http://www.alcf.anl.gov/user-guides/how-queue-job

qgsub -A ATPESC2013 -n 10 -t 10 ./cpi

Run gstat to see status in queue

Output will be in "job_number".output file



MPI Sources

= The Standard itself:

— At http://www.mpi-forum.org
e All MPI official releases. Latest version is MPI 3.0
e Download pdf versions

= Online Resources

— http://www.mcs.anl.gov/mpi

e pointers to lots of stuff, including other talks and tutorials, a FAQ,
other MPI pages

— Tutorials; http://www.mcs.anl.gov/mpi/learning.html|
— Google search will give you many more leads




Latest MPI 3.0 Standard in Book Form

Available from amazon.com

http://www.amazon.com/dp/B002TM5BQK/




Tutorial Material on MPI, MPI-2

SCIENTIFIC SCIENTIFIC
AND AND
ENGCINEERING ENCGCINEERING
COMPUTATION COMPUTATION

SERIES SERIES

Using MPI Using MPI 2

Portable Parallel Programming Advanced Features of the
with the Message Passing Interface, Message Passing Interface
Second Editicl

William r Anthony Skjellum

Eine Einfuhrung
y YTz —=AD

P RERE i
IAYP L IOYT | A SO SR T p—
an A -x !

William Gropp P William Gropp

Ewing Lusk EEOEE ?,,. / = Ewing Lusk

Anthony Skjellum : - Rajeev Thakur




Some Example Codes

www.cs.illinois.edu/~wgropp/advmpi.tgz



The End






Argonne°

NATIONAL LA BORATORY

MPI-3

éx,\\ U.S. DEPARTMENT OF
.4/ ENERGY



Overview of New Features in MPI-3

=  Major new features
— Nonblocking collectives
— Neighborhood collectives
— Improved one-sided communication interface
— Tools interface
— Fortran 2008 bindings
= Other new features
— Matching Probe and Recv for thread-safe probe and receive
— Noncollective communicator creation function
— “const” correct C bindings
— Comm_split_type function
— Nonblocking Comm_dup

— Type_create_hindexed block function
= C++ bindings removed

= Previously deprecated functions removed

35



Nonblocking Collectives

Nonblocking versions of all collective communication
functions have been added
— MPI_lbcast, MPI_Ireduce, MPI_lallreduce, etc.

— There is even a nonblocking barrier, MPI_Ibarrier
= They return an MPI_Request object, similar to nonblocking
point-to-point operations
= The user must call MPI_Test/MP|_Wait or their variants to

complete the operation

= Multiple nonblocking collectives may be outstanding, but they
must be called in the same order on all processes

36



Neighborhood Collectives

= New functions MPI_Neighbor_allgather,
MPI_Neighbor_alltoall, and their variants define collective
operations among a process and its neighbors

= Neighbors are defined by an MPI Cartesian or graph virtual
process topology that must be previously set

= These functions are useful, for example, in stencil
computations that require nearest-neighbor exchanges

= They also represent sparse all-to-many communication
concisely, which is essential when running on many
thousands of processes.

— Do not require passing long vector arguments as in MPI_Alltoallv

37



Improved Remote Memory Access Interface

= Substantial extensions to the MPI-2 RMA interface (MPIl_Put, MPI_Get)

= New window creation routines:

— MPI_Win_allocate: MPI allocates the memory associated with the window

(instead of the user passing allocated memory)

— MPI_Win_create_dynamic: Creates a window without memory attached. User
can dynamically attach and detach memory to/from the window by calling
MPI_Win_attach and MPI_Win_detach

— MPI_Win_allocate_shared: Creates a window of shared memory (within a
node) that can be can be accessed simultaneously by direct load/store
accesses as well as RMA ops

= New atomic read-modify-write operations
— MPI_Get_accumulate
— MPI_Fetch_and _op (simplified version of Get_accumulate)

— MPI_Compare_and_swap

38



Improved RMA Interface contd.

= A new “unified memory model” in addition to the existing memory model,
which is now called “separate memory model”

= The user can query (via MPI_Win_get_attr) whether the implementation
supports a unified memory model (e.g., on a cache-coherent system), and
if so, the memory consistency semantics that the user must follow are
greatly simplified.

= New versions of put, get, and accumulate that return an MPI_Request
object (MPI_Rput, MPI_Rget, ...)

= User can use any of the MPI_Test/Wait functions to check for local
completion, without having to wait until the next RMA sync call

39



Tools Interface

Beyond the PMPI profiling interface

An extensive interface to allow tools (debuggers, performance analyzers,
etc.) to portably extract information about MPI processes
Enables the setting of various control variables within an MPI
implementation, such as algorithmic cutoff parameters

— e.g, eager v/s rendezvous thresholds

— Switching between different algorithms for a collective communication

operation

Provides portable access to performance variables that can provide insight
into internal performance information of the MPIl implementation

— e.g., length of unexpected message queue

Note that each implementation defines its own performance and control
variables; MPI does not define them

40



Fortran 2008 Bindings

= An additional set of bindings for the latest Fortran
specification

= Supports full and better quality argument checking with
individual handles

= Support for choice arguments, similar to (void *) in C
" Enables passing array subsections to nonblocking functions
= QOptional ierr argument

" Fixes many other issues with the old Fortran 90 bindings

41



Miscellaneous Features

= QOther new features
— Matching Probe and Recv for thread-safe probe and receive
— Noncollective communicator creation function
— “const” correct C bindings
— Comm_split_type function
— Nonblocking Comm_dup

— Type_create_hindexed_block function
* C++ bindings removed

" Previously deprecated functions removed

42



What did not make it into MPI-3

= Some evolving proposals did not make it into MPI-3

— e.g., fault tolerance and improved support for hybrid programming

= This was because the Forum felt the proposals were not ready for
inclusion in MPI-3

* These topics may be included in a future version of MPI

= Current activities of the MPI Forum (for MPI 3.x and MPI 4) can
be tracked at http://meetings.mpi-forum.org/

= The full standard and other materials can be found at http://mpi-
forum.org

43



